GCE MARKING SCHEME

PHYSICS
AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

PH1 1
PH2 5
PH4 10
PH5 17

GCE Physics - PH1

Question				Marking details	Marks Available
1.	(a) (b)	(i) (ii) (i) (ii)	(I) (II) (III) (IV)	[A quantity with] magnitude / size and direction. Any suitable quantity (e.g force) other than velocity or acceleration. $u t$ shown to have units: $\mathrm{ms}^{-1} \mathrm{x} \mathrm{s} \rightarrow[\mathrm{m}]$ (1) $(1 / 2) a t^{2}$ shown to have units: $\mathrm{ms}^{-2} \mathrm{x} \mathrm{s}^{2} \rightarrow[\mathrm{~m}](1)$ Comment: all terms have same units or equivalent e.g. LHS=RHS $u=8 \mathrm{~m} \mathrm{~s}^{-1}$ UNIT MARK $1 / 2 a=3$ $a=6\left[\mathrm{~ms}^{-2}\right]$ Substitution and answer $x=115[\mathrm{~m}]$ Equation (1) Substitution (1) ecf for u, a and x $v=38\left[\mathrm{~ms}^{-1}\right]$ Question 1 total	[1] [1] [3] [1] [1] [1] [3] [11]
2.	(a) (b)	(i) (ii) (i) (ii) (iii) (iv) (v) (vi)		[electric] current $I=6[\mathrm{~A}]$ Parallel combinations calculated: 4Ω (1); 2Ω (1) Series addition: $6[\Omega]$ (1) [ecf] $\mathrm{XY} \rightarrow 2 / 3 \times 12=8[\mathrm{~V}]$ (1) $\mathrm{YZ} \rightarrow 1 / 3 \times 12=4[\mathrm{~V}]$ (1) $\begin{array}{ll} \text { or } & I=12 / 6=[2 \mathrm{~A}] \quad(1) \\ & V_{\mathrm{xy}}=8[\mathrm{~V}] \text { and } V_{\mathrm{yz}}=4[\mathrm{~V}] \tag{1} \end{array}$ ecf No Change (1) Correct explanation in terms of: Either: Ratio of resistances stays the same $\}$ (1) ecf Or: New current calculated ($11 / 3 \mathrm{~A}$) and used ζ $R=12 / 1.5=8[\Omega]$ (1) S_{1} open and S_{2} closed (1) $\begin{array}{lll} P=(12)^{2} / 9 & \text { or } \quad P=11 / 3 \times 12 & \text { or } \quad P=(11 / 3)^{2} \times 9 \\ P=16[\mathrm{~W}](1) & & \end{array}$ Strategy - various switch settings and corresponding powers calculated e.g Close both: $R=6[\Omega]$ (1) and $P=24[\mathrm{~W}]$ (1) e.g. $P=V^{2} / R(1)$ largest P when R smallest or smallest R identified as $6[\Omega]$ [must be linked to $P=V^{2} / R$] (1) S_{1} and S_{2} closed (1) e.g. $P=I^{2} R(1)$ largest P when I greatest when R smallest [must be linked to $\left.P=I^{2} R\right]$ (1) S_{1} and S_{2} closed (1) (N.B. $P=I V$ could be used here) In both of the above the $3^{\text {rd }}$ mark can be awarded as a standalone mark provided some sensible reasoning is given. Question 2 total	[1] [1] [3] [2] [2] [2] [2] [3] [16]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline 3. \& (a)
(b)
(c)

(d) \& \begin{tabular}{l}
(i)

(ii)

 \&

[Electrical] energy [or work done] transferred to whole of circuit [or through cell] (1) per coulomb [or unit charge] (1)

Sensible scale and axes labelled with units (1)

All points correct $\pm 1 / 2$ small square division (1)

Line of best fit (1) (no requirement $\rightarrow y$ axis)

$E=1.48[\mathrm{~V}](\pm 0.01 \mathrm{~V})$ ecf from graph

Gradient attempted or $r=\frac{E-V}{I}$ (by implication)

$r=0.83[\Omega]$ (1) ecf from graph

$$
\begin{align*}
& I=\frac{E}{R+r}\left\{\frac{1.48}{6+0.83}\right\} \quad(1) \quad(\text { ecf on } E \text { and } r) \quad I=0.22 \mathrm{~A} \tag{1}\\
& t=20 \times 60[1200 \mathrm{~s}](1) \\
& Q=0.22(\text { ecf) } \times 1200(\text { ecf })=264[\mathrm{C}] \quad \text { (1) }
\end{align*}
$$

Question 3 Total

 \&

[2]

[3]

[1]

[2]

[4]

[12]
\end{tabular}

\hline 4. \& (a) \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | Ruler and wire (1) |
| :--- |
| Moving pointer (or crocodile clip shown) (1) |
| Ohmmeter connected correctly with no power supply or voltmeter |
| and ammeter positioned correctly with power supply (1) |
| Straight line through origin |
| Gradient $=R / l$ or pair of R and l values from graph (1) |
| Measure diameter to calculate area (1) |
| $\rho=\operatorname{grad} \mathrm{x}$ area or substitution into $\rho=R A / l$ |
| $\mathrm{Vol}=A l=1 / 3 A \times 3 l($ CSA reduced to $1 / 3$ original) (1) $\begin{equation*} R=\frac{\rho 3 l}{\mathrm{~A} / 3} \tag{1} \end{equation*}$ |
| $\rho=$ constant stated (or implied) (1) |
| OR: |
| $A=\mathrm{vol} / l$ so $R=\rho l^{2} / \mathrm{vol}$ (1) |
| $R \propto l^{2}$ (1) |
| New $R \alpha(3 l)^{2}$ so new $R=9 R(1)$ |
| Question 4 Total | \& | [3] |
| :--- |
| [1] |
| [3] |
| [3] |
| [10] |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Energy cannot be created or destroyed, only converted to other forms. \\
\(1 / 2 m v^{2}=m g h\) shown or use of \(v^{2}=u^{2}+2 a x\) (1) \\
(no mark for \(E_{k}=E_{p}\) only) \\
Clear manipulation (1)
\[
v=48.5\left[\mathrm{~m} \mathrm{~s}^{-1}\right]
\] \\
Air resistance /drag (1) \\
Friction between bobsleigh and ice or surface or track or on surface \\
/ice/snow (1) \\
Actual \(v=[48.5-20 \% \times 48.5]=38.8 \mathrm{~m} \mathrm{~s}^{-1} \quad\) (1) (ecf) \\
Actual \(E_{k}=210762[\mathrm{~J}] \quad\) (1) \\
Either [\(\left.1 / 2 \times 280 \times(48.5)^{2}-210762\right]\) or [\(280 \times 9.8 \times 120-210762\)] \\
(ecf on 48.5 or 210762) (1) \\
Work done against resistive forces \(=118500 \mathrm{~J}\) (1) \\
\(=F \times 1400\) (1) ecf \\
\(F=85[\mathrm{~N}]\) (1) ecf for use of 1.4 km \\
Question 5 Total
\end{tabular}} \& Marks Available \\
\hline 5. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \& \([1]\)
\([2]\)
\([1]\)
\([2]\)
\([2]\)
\([4]\)
\([12]\) \\
\hline 6. \& (a)
(b)
(c)
(d) \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\cos 40^{\circ}(1) ; 600 \cos 40^{\circ}=460[\mathrm{~N}] \quad\) (1) \(386[\mathrm{~N}]\) no ecf if \(\sin\) or cos mixed up \\
(90x9.8) - 386 (1) (ecf) N.B. if 10 used -1 mark) \\
= 496 [N] \\
\(0.8 \times 496=397 \mathrm{~N}\) (1) ecf \\
\(\Sigma F_{\text {horizontal }}=(460-397)=63 \mathrm{~N}\) (1) (ecf) \(a=0.7 \mathrm{~m} \mathrm{~s}^{-2}\) (1) UNIT MARK \\
gravitational pull of tree trunk on earth \\
Question 6 Total
\end{tabular} \& [2]
[1]
[2]

$[3]$
$[1]$
$[9]$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question 1} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{7}{*}{1.} \& \multirow[t]{7}{*}{(a)

(b)
(c)} \& (i) \& 0.40 [m] \& [1]

\hline \& \& (ii) \& 0.20 [s] \& [1]

\hline \& \& (iii) \& $f=5.0[\mathrm{~Hz}](1)$ or $v=\frac{\lambda}{T}$ or by implication $\nu=2.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)$ ecf on T and λ \& [2]

\hline \& \& \& F and J \& [1]

\hline \& \& (i) \& Direction of oscillations or trolley motion (accept particle vibration or wave oscillations) and direction of [wave] travel (1) are at right angles. (1) \& [2]

\hline \& \& (ii) \& \& [1]

\hline \& \& \& Question 1 total \& [8]

\hline
\end{tabular}

Question 4			Marking details	Marks Available
4.	(a)		Interference between or superposition of or sum of two [progressive] waves [of equal amplitude and frequency] Travelling in opposite directions or reflect (1)	[2]
	(b)	$\begin{array}{r} \text { (i) } \\ \text { I } \\ \text { II } \end{array}$		[2]
		(ii)	$\begin{align*} & \lambda=0.75[\mathrm{~m}] \text { (1) or by implication } \\ & f=\underline{128 \mathrm{~Hz} \text { UNIT }} \text { (1) } \tag{1} \end{align*}$	[2]
	(c)	(i)		[1]
		(ii)	$\lambda=3.00[\mathrm{~m}]$ or by implication ecf provided λ consistent with diagram (1) $f=32[\mathrm{~Hz}]$ (1) ecf	[2]
	(d)		$32 n[\mathrm{~Hz}]$ or equivalent	[1]
			Question 4 Total	[10]

Question 5			Marking details	Marks Available
5.	(a)	(i)	ϕ is [minimum] energy needed to release an electron from surface [or from metal or from material]. (1) No marks for giving meaning of f_{0}. So [minimum] photon energy needed is ϕ. (1) So $h f_{0}=\phi$ or $E_{\text {photon }}=h f(1)$ Award 2 x (1) of: - More photons per second - Individual photon energies unchanged - $E_{k \max }$ depends on energy of individual photon or $E_{k \max }=h f-\phi$ does not include intensity. Accept: Photons don't co-operate [in releasing electrons]. Increase / adjust pd until nano-ammeter shows zero current [or equiv.] (1) Read voltmeter (1) or by implication $E_{k \max }=e V$ Gradient $=6.7[\pm 0.2] \times 10^{-34}[\mathrm{~J} \mathrm{~s}](1)$ Mention of Planck's constant and sensible comparison (1) $\phi=4.1[\pm 0.2] \times 10^{-19}[\mathrm{~J}]$ barium but only award mark if some reasoning given e.g. correct reference to intercept (1) Question 5 Total	[3]
		(ii)		[2]
				[3]
		(i)		[2]
		(ii)		[2]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question 6} \& Marking details \& Marks Available

\hline \multirow[t]{6}{*}{6.} \& \multirow[t]{6}{*}{(a)

(b)} \& (i) \& | $\Delta E=1.87 \times 10^{-19}[\mathrm{~J}]$ |
| :--- |
| $\lambda=\frac{h c}{\Delta E}$ (1) or equivalent, including $\lambda=\frac{c}{f}$ and $f=\frac{c}{\lambda}$. |
| $\lambda=1.06 \times 10^{-6} \mathrm{~m}$ (1) ecf on arithmetical slip in ΔE. | \& [3]

\hline \& \& (ii) \& $\lambda=7.9 \times 10^{-7}[\mathrm{~m}]$ \& [1]

\hline \& \& (i) \& More electrons [accept atoms, ions] in \underline{U} than in L \& [1]

\hline \& \& (ii) \& | PI ensures stimulated emission (1) more likely [frequent] than absorption [for photons of energy $1.87 \times 10^{-19} \mathrm{~J}$] (1) Stimulated emission needed for light amplification because in each stimulated emission event 2 photons out for 1 in or implied by "in phase". |
| :--- |
| (1) | \& [3]

\hline \& \& (iii) \& Electrons drop from L [to ground state] leaving L depopulated. (1) Making it easier to have more electrons in U than L or making a PI easier to establish or needing less pumping. (1) \& [2]

\hline \& \& \& Question 6 Total \& [10]

\hline
\end{tabular}

Question 8			Marking details	Marks Available
8.	(a) (b)	(i)	They interact by the weak interaction. (1) Interactions [very] infrequent compared with strong or e-m. (1) [or other correct and relevant comment e.g. no charge]	[2]
		(i)	Combination of 3 quarks	[1]
		(ii)	Lepton no: $1+0=0+0+1$ (1) or equivalent Charge: $0+e=e+e+(-e)$ (1) or equiv. e.g. $0+1=1+1-1$	[2]
		(iii)	For the $1^{\text {st }}$ mark either of these (u or d): $\begin{array}{lll} - & \text { u: }[0+] 1+2 \rightarrow 2+2[+0] & \text { or } \\ - & 3 \rightarrow 4 \\ \text { d: } & {[0+] 2+1 \rightarrow 1+1[+0]} & \text { or } \\ & 3 \rightarrow 2 \end{array}$ For the $2^{\text {nd }}$ mark: the other (i.e. u or d) and remark that a d has changed to a u OR equivalent N.B. uud + udd \rightarrow uud + uud is an alternative for the $1^{\text {st }}$ mark.	[2]
		(iv)	Lepton number not conserved.	[1]
			Question 8 Total	[8]

GCE Physics - PH4

Questions			Marking details	Marks Available
2.	(a)(b)		$m=\rho V=10^{3}\left(1.7 \times 10^{-3}\right)=1.7[\mathrm{~kg}]$	1
			All points plotted correctly (\pm half small square division) and straight line (1) Sensible scales on both axes (1)	2
	(c)		$20 \pm 1\left[{ }^{\circ} \mathrm{C}\right]$	1
	(d)		$3.20 \pm 0.05[\mathrm{~min}]($ or $192 \pm 3 \mathrm{~s}$)	1
	(e)		Heat supplied to water in e.g. $2.5 \mathrm{~min}(Q)$ $=\left(3 \times 10^{3}\right)(2.5 \times 60)=4.5 \times 10^{5}[\mathrm{~J}](1)$	3
			e.g. $\Delta \theta=95.5-32.5=63\left[{ }^{\circ} \mathrm{C}\right]$ (1) (or equivalent for second and third marks provided consistent for substitution that follows) Rearranging formula for $c=\frac{Q}{m \Delta \theta}$ Substitution of values and result (1) $c=\frac{4.5 \times 10^{5}}{(1.7)(63)}=4.2 \times 10^{3}\left[\mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right] \quad\left(\pm 0.1 \times 10^{3}\right)$	
	(f)	(i) (ii) (iii)	[All] temperature measurements lower [because heat taken by container (heat lost) i.e. some reference to heat going elsewhere or lost] (1) Gradient of graph shallower or $\Delta \theta$ smaller (1) c larger (overestimated) (1) No ecf within this question part.	3
			Question 2 Total	[11]

Question			Marking details	Marks Available
3.	(a)		Rearranging Hooke's Law $\quad k=\frac{F}{e}=\frac{m g}{e}$ (1) Substitution and correct result with UNIT $\frac{(2000)(9.81)}{(0.15)}=1.31 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-1}(1)$	2
	(b)	(i)	$e=\frac{(75+85) g}{\left(1.31 \times 10^{5}\right)}=0.012[\mathrm{~m}]=1.2[\mathrm{~cm}] \quad$ (allow ecf for $\left.k\right)$. Correct method. (1) Correct result. (1)	2
		(ii)	$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{2160}{1.31 \times 10^{5}}}=0.81[\mathrm{~s}]$ Substitution into formula. (1) Correct result.(1) Award 2 marks for answer of 0.78 [s]	2
		(iii)	Natural frequency of system is $\frac{1}{0.81} \cong 1.24[\mathrm{~Hz}]$; the frequency of driving force is essentially equal to this; so resonance occurs. (1) (need all three points) Accept $1.28[\mathrm{~Hz}]$. Amplitude of oscillation becomes large/maximum (1)	2
	(c)		Any 3x(1): - return quickly to equilibrium - critical damping - avoid resonance / large amplitude - reduce oscillations - dissipating energy Accept: - comfortable ride - braking better on rough surfaces	3
			Question 3 Total	[11]

	tion		Marking details	Marks Available
4.	(a)	(i)	$\omega=\frac{45(2 \pi)}{60}=4.71\left[\mathrm{rad} \mathrm{~s}^{-1}\right]$ Conversion from rotations to radians, with the '45'. (1) Conversion from minutes to seconds and convincing working. (1) $\text { velocity }=\omega r=(4.71)(0.08)=0.38\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ Formula and substitution. (1) Result. (1)	2
		(iii)	$\begin{aligned} & \text { acceleration }=\omega^{2} r=(4.71)^{2}(0.08)=1.77\left[\mathrm{~m} \mathrm{~s}^{-2}\right] \\ & \text { Formula and substitution. (1) } \\ & \text { Result (1) } \end{aligned}$	2
		(iv)	Towards point Q , or towards centre of circle.	1
	(b)	(i) (ii) (iii)	$A=0.080[\mathrm{~m}]$	1
			$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4.71}=1.33[\mathrm{~s}]$	1
			$a=-1.77 \sin (4.71 \times 0.20)=-1.43\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ Substitution of time (1). Result with minus sign (1)	2
		(iv) (v)	A body moves with SHM if its acceleration - is directly proportional to its displacement from a fixed point - is always directed towards that [fixed] point 1 for: each statement	2
			$\begin{aligned} & a=-\omega^{2} A \sin (\omega t) \\ & x=A \sin \omega t \quad \text { so substitution give } \\ & a=-\omega^{2} x \quad \begin{array}{l} \text { convincing manipulation. (1) } \\ \text { final expression linking to SHM.(1) } \end{array} \end{aligned}$	2
	(c)		$x=0.06 \sin \left(4.71 t-\frac{\pi}{2}\right)$ 1 for: each correct parameter inserted.	3
			Question 4 total	[18]

Question			Marking details	Marks Available
5.	(a)	(i) (ii)	The [vector] sum of the momenta of bodies [in a system] stays constant [even if forces act between the bodies] provided there is no external [resultant] force. Idea of conservation of momentum i.e. expression or statement of $p_{i}=p_{f}+m_{e} \nu$ (1) No need to specify here that momentum of the hydrogen atom is initially zero. Substitution of values and convincing manipulation. (1) $\begin{aligned} & \frac{6.63 \times 10^{-34}}{620 \times 10^{-9}}=-\frac{6.63 \times 10^{-34}}{620 \times 10^{-9}}+\left(1.67 \times 10^{-27}\right) v \\ & v=1.28\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	2
		(iii)	$E=h f=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{620 \times 10^{-9}}=3.2 \times 10^{-19}[\mathrm{~J}]$	1
	(b)	(i)	Equating momenta, rearranging and substitution (1) $m v=\frac{h}{\lambda}$ $\lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-34}}{\left(1.67 \times 10^{-27}\right)(1.28)}=3.10 \times 10^{-7}[\mathrm{~m}](=310 \mathrm{~nm})$ Correct value of wavelength (1) (allow ecf if substitution incorrect but calculation consistent)	2
		(ii)	Ultraviolet. ecf	1
			Question 5 total	[8]

Question			Marking details	Marks Available
6.	(a)	(i)(ii)	$\begin{aligned} & \frac{F}{m}=-\frac{G M}{r^{2}}=-\frac{\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right)}{\left(1.50 \times 10^{11}\right)^{2}}=[-] 5.90 \times 10^{-3} \mathrm{~N} \mathrm{~kg}^{-1} \\ & \text { formula and substitution (1) } \\ & \text { result with } \underline{\text { UNIT }(1) .} \end{aligned}$	2
			$\begin{aligned} & -\frac{G M}{r}=-\frac{\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right)}{\left(1.50 \times 10^{11}\right)}=-8.85 \times 10^{8}\left[\mathrm{~J} \mathrm{~kg}^{-1}\right] \\ & \text { formula and substitution (1) } \\ & \text { result with sign (1) ecf } \end{aligned}$	2
	(b)	(i)	$r_{1}=\left(\frac{M_{2}}{M_{1}+M_{2}}\right) d=\left(\frac{1.90 \times 10^{27}}{1.99 \times 10^{30}+1.90 \times 10^{27}}\right)\left(7.79 \times 10^{11}\right)$ or with approximation (1) $\begin{aligned} & =7.43 \times 10^{8}[\mathrm{~m}](1) . \\ & 7.43 \times 10^{8}>6.96 \times 10^{8}(\text { so centre of mass outside Sun })(1) \end{aligned}$	3
		(ii)	use of formula and substitution (1) (or with approximation) $T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{1}+M_{2}\right)}}=$ result from the substitution (1)	4
			$2 \pi \sqrt{\frac{\left(7.79 \times 10^{11}\right)^{3}}{\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}+1.90 \times 10^{27}\right)}}=3.75 \times 10^{8}[\mathrm{~s}]$ or with approximation. $\begin{aligned} & \omega=\frac{2 \pi}{T}=1.68 \times 10^{-8}\left[\mathrm{rad} \mathrm{~s}^{-1}\right](\text { allow ecf }) .(1) \\ & \text { speed }=\omega r_{1}=\left(1.68 \times 10^{-8}\right)\left(7.43 \times 10^{8}\right)=12.5\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	
			Question 6 Total	[11]

GCE Physics - PH5

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{12}{*}{1.} \& \multirow[t]{5}{*}{(a)

(b)} \& \& Correct α or β absorber (1) \&

\hline \& \& \& If drop after α absorber, then α present (1) (Alpha is stopped by paper - award 2 marks) \&

\hline \& \& \& If further drop after β absorber then β present (1) \&

\hline \& \& \& If (significant) count after β absorber then γ present or equivalent (1) \& 4

\hline \& \& (i) \& $19 \times 10^{15}[\mathrm{~Bq}]$ \& 1

\hline \& \multirow{7}{*}{(b)} \& (ii) \& Use of $\lambda=\frac{\ln 2}{T_{1 / 2}}$ (1) e.g. 0.0271 per day or $3.13 \times 10^{-7} \mathrm{~s}^{-1}$ Or $A=\frac{A_{0}}{2^{x}}$ quoted \&

\hline \& \& \& $\operatorname{Or} A=\frac{A_{0}}{2^{x}}$ used \&

\hline \& \& \& Substitutions of values (ignore wrong units or factors of ten slips) (1) Or $x=14.26$ \&

\hline \& \& \& Correct answer $3.85 \times 10^{12}[\mathrm{~Bq}]$ (1) \& 4

\hline \& \& (iii) \& Attempt at using $A=\lambda N$ e.g. $76 \times 10^{15}=\lambda N(1)$ \&

\hline \& \& \& $N=2.4 \times 10^{23}(1)$ \& 2

\hline \& \& \& Question 1 Total \& [11]

\hline
\end{tabular}

Question		Marking details	Marks Available
3.	(a)	$Q=C V(1)$	
		212 [nC$]$ (1)	2
	(b)	Taking logs e.g. $\ln Q=\ln Q_{0}-\frac{t}{c R}(1)$	
		Algebra e.g. $R=-\frac{t}{\operatorname{cln} \frac{V}{V_{0}}}(1)$	
		Substitution of correct values (1)	4
		Answer $=1.36[\mathrm{M} \Omega](1)$	
	(c)	$C=\frac{\varepsilon_{0} A}{d} \text { used e.g. rearranged (1) }$	
		$\mathrm{A}=x^{2}($ or implied $) \rightarrow C=\frac{\varepsilon_{0} x^{2}}{d}$ first two marks (1)	
		Answer $=1.49$ [m] (1)	3
	(d)	Dielectric between plates	1
		Question 3 total	[10]

	tion	Marking details	Marks Available
7.	(a)	Downward momentum given to air hence a force is applied (1) (N.B. downward can appear next to momentum or force) Newton's 3rd (or implied) force exerted on the plane by the air (1)	2
	(b)	Speed is greater at left side [due to conservation of mass] (1) (accept speed is decreasing)	
		Air is decelerating or acceleration to the left or due to decrease in momentum(1)	2
	(c)	Lift component left is unbalanced (1) i.e. linking to resultant force	2
		Vertical component of lift is [slightly] less than weight (1) i.e. linking to direction Alternative: Good vector diagram (award 2 marks) The lift and weight added together give a resultant force acting downwards to the left. (award 1 mark only) Or resultant force is down and left (award 1 mark only) Or lift + weight is down and left (award 1 mark only)	
	(d)	Air has high speed in tornados (1) (accept moving)	2
		This means a much lower pressure outside or much higher pressure inside (1) (N.B. much can also be implied by high speed in the $1^{\text {st }}$ mark)	
	(e)	Attempt at pressure difference (1)	
		Pressure difference correct i.e. 155 [Pa] (1)	
		Pressure difference 155 ecf x $850 \quad[=130 \mathrm{kN}]$ (1) (No marks for using the lift equation)	3

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{10}{*}{8.} \& \multirow{10}{*}{(d)} \& \multirow[t]{4}{*}{(iv)

(i)} \& Ignore capacitance (or $\omega L-\frac{1}{\omega C}$ attempted) (1) \&

\hline \& \& \& Correct calculation for impedance e.g.. $\sqrt{887^{2}+2200^{2}}$ (1) \&

\hline \& \& \& $$
\text { Answer }=\frac{14.4}{2370}=6.1[\mathrm{~mA}]
$$ \& 3

\hline \& \& \& Attempt at an explanation at low and high frequency (1) \&

\hline \& \& \& Correct variation of X_{C} with frequency (i.e. large at low frequency or low at high frequency) (1) \&

\hline \& \& \& Correct division of pd with respect to frequency (e.g. at high frequency $R \gg X_{C}$ so $V_{\text {Out }}$ is large or the opposite at low frequency) (1) \& 3

\hline \& \& (ii) \& Phasor diagram drawn or implied (1) V \&

\hline \& \& \& $X_{C}=R$ or $V_{C}=V_{R}$ either derived or quoted (implies diagram correct) (1) \&

\hline \& \& \& $$
\text { Answer = } 154[\mathrm{~Hz}] \text { (1) }
$$ \& 3

\hline \& \& \& Question 8 Total \& [20]

\hline
\end{tabular}

Question			Marking details	Marks Available
9.	(i) (I)		2	

Question		Marking details	Marks Available
(c)	(ii)	Mention of Plato or Pythagoras (1)	
		Nature based on mathematics (or equivalent) (1)	2
	(i)	Path of body acted on by central force [towards S] Accept path of planet. (1)	
		[Central] force applied at [just] these points (1)	2
	(ii)	Equal areas in equal times OR area swept out proportional to time	1
	(i)	Use of or by implication : (1) $\frac{v^{2}}{r g_{\text {suff }}} \text { or } \frac{r \omega^{2}}{g_{\text {suff }}}=2.78 \times 10^{-4}(1)$	2
	(ii)	Attempt to evaluate $\left(\frac{r_{E}}{r_{M O}}\right)^{2}$ $=2.75 \times 10^{-4}(1)$	2
	(iii)	Either: spherically symmetric $\mathbf{O R}$ behaves as if all at centre	1
		Question total	[20]

Question			Marking details	Marks Available
10.	(a)	(i)	Diameter[accept width/thickness do not accept radius/area] \rightarrow micrometer/digital calliper [accept vernier calipers but not vernier only] (1) Original [accept natural] length \rightarrow metre rule (1)	2
		(ii)	Take (one set of) F and e from graph or Measure gradient [or $=F / \Delta x]$ Accept gradient $=E A / l(1)$ Use value of $\pi d^{2} / 4$ or πr^{2} [explanation of how A is calculated required - can be awarded from (i)] (1)	
			Insert in relevant equations (1) $Y=\frac{F l_{0}}{A \Delta x}$ or $Y=\operatorname{grad} \times \frac{l_{0}}{A}$ etc.	3
	(b)	(i)	$\left[e_{\text {iron }}\right]=\frac{F l_{0}}{A E_{\text {iron }}}\left[\text { must show } \frac{F l_{0}}{A}\right]$	1
		(ii)	Attempt at $e_{\text {brass }}+e_{\text {iron }}$ (1)	
			Correct manipulation/algebra (1)	2
		(iii)	CSA calculated: $7.9 \times 10^{-7}\left[\mathrm{~m}^{2}\right]$ (1)	
			Substitution (ecf on CSA) (1)	
			$W=0.042[\mathrm{~J}]$ (1) $[-1$ for slip in power of $10 ;-1$ for use of diameter instead of radius]	
		(iv)	1.8 mm UNIT mark	1

Question		Marking details	Marks Available
	(v)	Greater extension by brass [or smallest extension by iron] (1)	4
(c)		$e \propto 1 / E$ (1) [link Young modulus to extension]	
		All other factors same for both wires (1)	
		Ratio 2:1 (1.2 mm:0.6 mm) (1) [Full marks may be obtained by calculation only].	
	(i)	Melamine formaldehyde \rightarrow thermosetting (1)	
		Low density polyethylene \rightarrow thermoplastic (1)	2
	(ii)	Melamine brittle - low max strain (1)	
		or polythene not brittle - high max strain	
		Melamine stiffer - higher Young modulus (1)	2
		or polythene less stiff - lower Young modulus	
		[or accept low strain for high stress as explanation for stiffness of material]	
		Question total	[20]

Question		Marking details	Marks Available
(b)	(i)	$Z=$ Density x velocity [of ultrasound in the material] Must be in words as equation is given Do not accept speed of light for velocity	1
	(ii)	$Z_{1}=442$ and $Z_{2}=1700 \times 10^{3}$	
		$f=\operatorname{approx} 1 / 0.995(1)$	2
	(iii)	Almost all ultrasound reflected/ none able to enter the body (1)	
		Need for a coupling gel/medium (1)	2
(c)	(i)	Exposure: amount of radiation incident on the body (1) Do not accept: 'total radiation exposed to' as it is a rewrite of the question.	2
		absorbed dose: energy per unit mass absorbed by body (1)	
	(ii)	Dose equivalent $=$ dose x quality factor (1) Do not accept in terms of units	
		Quality factor depends on ionization or alpha $Q=20$ and gamma $Q=1(1)$	3
		Greater for alpha than gamma (1)	
		Question total	[20]

Question		Marking details	Marks Available
(b)	(i)	Area $=20 \mathrm{~mm} \times 20 \mathrm{~mm}$ or implied (1) Including side-faces loses the mark. Temperature difference $=150\left[{ }^{\circ} \mathrm{C}\right](1)$ Heat $=2040[\mathrm{~W}](1)$ ecf on A, provided not a volume instead of an area	3
	(ii) (iii)	Work is done on the gas (1) Internal energy of the gas increases (no heat not required) (1) Freestanding mark i.e. accept if wrongly deduced, but only if link with temperature rise made. Efficiency $=1-\frac{T_{2}}{T_{1}} \quad$ accept $\frac{Q_{1}-Q_{2}}{Q_{1}}$ or $1-\frac{Q_{2}}{Q_{1}}(1)$ T_{1} is larger or $\frac{T_{2}}{T_{1}}$ is smaller Q_{1} is larger or $\frac{T_{1}}{Q_{1}}$ is smaller but these need an explanation e.g. because temperature is higher. If done by putting temperatures into formula, they must be in K. (1) Efficiency is greater in equation (not an independent mark i.e. valid earlier argument needed, ignoring ${ }^{\circ} \mathrm{C}$ instead of K) (1) Question total	2 3 [20]

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

